Product Idea: CRT-alike OLED driver

Here is a retro gaming product idea that I would like to see on CrowdSupply. I do not know if it is actually feasible but I thought I would write up the idea since I would definitely buy this product.

The idea is to create an FPGA-based driver circuit connected directly to an OLED panel’s rows and columns, which simulates the phosphor scanning pattern of a cathode-ray tube.

This table:,_LCD,_plasma,_and_OLED_displays#cite_note-TR-20170112-13

suggests response times of OLED pixels are the same as CRT phosphors. (By contrast, LCD cells switch orders of magnitude too slow.)

In slow motion, the OLED’s output would look like this:

I looked around for examples of this type of circuit/driver and all I could find is that some small OLED displays use the SSD1351 driver:

I wonder what large OLED modules use. In terms of prototyping, how much surgery would a module need such that the the raw pixel row and column lines could be accessed? I could not find anywhere to buy raw panels, i.e., OLED panels without integrated controllers.

If this driver design were implemented, it would enable a product line of OLED screens that could substitute for CRTs for retro gaming. Given OLED panels’ flexibility they could be made with the same shape and curvature of Sony PVMs or arcade monitors. They could accept any retro input type (RGB, composite, component, VGA, 15kHz, 31kHz, etc.), be coated in glass, simulate different CRT shadow masks and phosphor arrangements and so forth.

The most important goal though would be matching a CRT’s zeroish latency. The ultimate “acid test” of this FPGA core would be: does it support Duck Hunt with the NES Light Gun without any modifications to the Light Gun or ROM? This video shows how this setup worked, and why it is so latency-sensitive:

If this latency target could not be achieved, then there is no point in doing this project. But if it could, then maybe OLEDs could be the contemporary display technology that finally unseats the venerable CRT for retro gaming.

Leave a comment

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.